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ECS455 2011/2, Chapter 3 Part 2, Dr.Prapun

In the previous section, we discussed Poisson process. In this section, we
combine what we know about Poisson process with the assumption on the
call length/duration. To do this, we will use (again) the small-slot (discrete-
time) approximation.

2.1. For this section, we will assume that there are m channels available in
the trunking pool. Therefore, the probability Pb that a call requested by a
user will be blocked is given by the probability that none of the m channels
are free when a call is requested.

We will consider the long-term behavior of this system, i.e. the system
is assumed to have been operating for a long time. In which case, at the
instant that somebody is trying to make a call, we don’t know how many
of the channels are currently free.

2.2. Let’s first divide the time into small slots (of the same length δ) as we
have done in the previous section.

Then, consider any particular slot. Suppose that at the beginning of this
time slot, there are K channels that are currently used.10 We want to find
out how this number K changes as we move forward one slot time. This

10The value of K can be any integer from 0 to m.
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random variable K will be call the state of the system11. The system moves
from one state to another one as we advance one time slot.

Example 2.3. Suppose there are 5 person using the channels at the begin-
ning of a slot. Then, K = 5.

(a) Suppose that, by the end of this slot, none of these 5 persons finish
their calls.

(b) Suppose also that there is one new person who wants to make a call at
some moment of time during this slot.

Then, at the end of this time slot, the number of channels that are used
becomes

5− 0 + 1 = 6.

So, the state K of the system changes from 5 to 6 when we reach the end
of the slot, which can now be regarded as the beginning of the next slot.

2.4. Our current intermediate goal is to study how the state K changes
from one slot to the next slot. Note that it might be helpful to label the
state K as K1 (or K[1]) for the first slot, K2 (or K[2]) for the second slot,
and so on.

As shown in Example 2.3, to determine how the Ki’s progress from K1

to K2 to K3 and so on, we need to know two pieces of information:

Q1 How many calls (that are being made at the beginning of the slot under
consideration) end during the slot that we are considering?

Q2 How many new call requests are made during the slot under consider-
ation?

Note that Q1 depends on the characteristics of the call duration and Q2
depends on the characteristics of the call request/arrival process. After we
know the answers to these two question, then we can find Ki via

Ki+1 = Ki − (# old call ends)︸ ︷︷ ︸
Q1

+ (# new call requests)︸ ︷︷ ︸
Q2

11This is the same “state” concept that you have studied in digital circuits class.
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2.5. Q2 is easy to answer.
A2: If the interval are small enough (δ is small), then there can be at most
one new arrival (new call request) which occurs with probability

p1 = λδ.

2.6. For Q1, we need to consider the call duration model . The M/M/m/m
assumption states that the call duration12 is exponentially distributed. Let’s
consider the call duration D of a particular call.

Recall that the probability density function (pdf) of an exponential ran-
dom variable X with parameter µ is given by

fX(x) =

{
µe−µx, x > 0,
0, x ≤ 0.

and the average (or expected value) is given by

E [X] =

∫ ∞
0

xfX(x)dx =
1

µ
.

You may remember that in the Erlang B formula, we assume that the aver-
age call duration is E [D] = H = 1

µ .
An important property of an exponential random variable X is its mem-

oryless property13:

P [X > x+ δ|X > x] = P [X > δ] .

For example,
P [X > 7|X > 5] = P [X > 2] .

12In queueing theory, this is sometimes called the service time .
13To see this, first recall the definition of conditional probability:

P (A |B ) =
P (A ∩B)

P (B)
.

Therefore,

P [X > x+ δ |X > x ] =
P [X > x+ δ and X > x]

P [X > x]
=
P [X > x+ δ]

P [X > x]
.

Now,

P [X > x] =

∞∫
x

µe−µxdx = e−µx.

Hence,

P [X > x+ δ |X > x ] =
e−µ(x+δ)

e−µx
= e−µδ = P [X > δ] .
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What does this memoryless property mean? Suppose you have a light-
bulb and you have used it for 5 years already. Let it’s lifetime be X.
Then, of course, X is a random variable. You know that X > 5 be-
cause it is still working now. The conditional probability P [X > 7|X > 5]
is the probability that it will still work after two more years of use (given
the fact that currently it has been working for five years). Now, if X is
an exponential random variable, then the memoryless property says that
P [X > 7|X > 5] = P [X > 2]. In other words, the probability that you can
use it for at least two more years is exactly the same as the probability that
you can use a new lightbulb for more than two years. So, your old lightbulb
essentially forgets that it has been used for 5 years, It always act as a ne
lightbulb (statistically). This is we we mean by the memoryless property of
an exponential random variable.

2.7. Note that we still haven’t answered Q1. We will now return to our
small slot approximation. Again, consider one particular slot. At the be-
ginning of our slot, there are K = k ongoing calls. The probability that a
particular call, which is still ongoing at the beginning of this slot, will be
unfinished by the end of this slot is e−µδ.

To see this, consider a particular call. Suppose the duration of this call
is D. By assumption, we know that D is exponential with parameter µ.

Let s be the length of time from the time that the call starts to the beginning
of our slot. Note that the call is still ongoing. Therefore D > s. Now, to
say that this call will be unfinished by the end of our slot is equivalent to
requiring that D > s+ δ. By the memoryless property, we have

P [D > s+ δ |D > s ] = P [D > s] = e−µδ.

Recall that we have K = k ongoing calls at the beginning of our slot. So,
by the end of our slot, the probability that none of them finishes is(

e−µδ
)k

= e−kµδ.
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The probability that exactly one of them finishes is

Now, note that ex ≈ 1 + x for small x. Therefore, A1:

(a) the probability that none of the K = k calls ends during our slot is

(b) the probability that exactly one of them ends during our slot is

Magically, these two probabilities sum to one. So, we don’t have to consider
other events/cases.

2.8. Summary:

So, after one (small) slot, there can be four events:
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The corresponding probability for each case is

Therefore, if we have K = k at the beginning of our time slot, the at the
end of our slot, K may

(a) remain unchanged with probability 1− λδ − kµδ, or

(b) decrease by 1 with probability kµδ, or

(c) increase by 1 with probability λδ.

This can be summarized into the following diagram:

Small slot Analysis (Transition Prob.) 

2 

Ki+1 = Ki + (# new call request) – (# old-call end) 

P[0 new call request] ≈ 1 -  

P[1 new call request] ≈  

P[0 old-call end] ≈ 1 - k 

P[1 old-call end] ≈ k 

k+1 k k-1 

  1 k k      1 k   

     1 1 1k k k          

The labels on the arrows are 

transition probabilities. 

Figure 5: State transition diagram for state k.

Note that the labels on the arrows indicate transition probabilities which
are conditional probabilities of going from some value ofK to another value.)

2.9. Given m, the possible values of K are 0, 1, 2, . . . ,m. We can combine
the diagram above into one diagram that includes all possible values of K:
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This diagram is called the Markov chain state diagram for Erlang B.
Note that the arrow λδ which should go out of state m will return to

state m itself because it means blocked calls which do not increase the value
of K.

Example 2.10. m = 2:

Small slot Analysis: Markov Chain 

3 

 Case: m = 2 

2 1 0 

 

1 

 2

1 2

1   

3 Markov Chains

3.1. Markov chains are simple mathematical models for random phenomena
evolving in time. Their simple structure makes it possible to say a great
deal about their behavior. At the same time, the class of Markov chains is
rich enough to serve in many applications. This makes Markv chains the
most important examples of random processes. In deed, the whole of the
mathematical study of random processes can be regarded as a generalization
in one way or another of the theory of Markov chains. [2]

3.2. The characteristic property of Markov chain is that it retains no mem-
ory of where it has been in the past. This means that only the current state
of the process can influence where it goes next.

3.3. Markov chains are often best described by diagrams.
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Example 3.4.

You move from state 1 to state 2 with probability 1. From state 3 you
move either to 1 or to 2 with equal probability 1/2, and from 2 you jump
to 3 with probability 1/3, otherwise stay at 2.

3.5. The Markov chains that we have seen in the Example 3.4 and in the
previous section are all discrete-time Markov chains. The Poisson process
that we have seen earlier is an example of a continuous-time Markov chain.
However, with our small-slot approximation (discrete-time approximation),
we may analyze the Poisson process as a discrete-time Markov chain.

3.6. We will now introduce the concept of stationary distribution, steady-
state distribution, equilibrium distribution, and limiting distribution. For
the purpose of this class, we will not distinguish these terms. We shall see
in the next example that for the Markov chains that we are considering, in
the long run, it will reach steady state distribution.

Example 3.7. Consider the Markov chain characterized by the state tran-
sition diagram given below:
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A B 

3/5 

1/2 

2/5 1/2 

Let’s try a thought experiment – imagine that you start with 100,000
trials of these Markov chain, all of which start in state B. So, during slot
1, all trials will be in state B. For slot 2, about 50% of these will move to
state A; but the other 50% of the trials will stay at B.

By the time that you reach slot 6, you can observe that out of the 100,000
trials, about 45.5% will be in state A and about 55.5% will be in state B.
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These numbers stay roughly the same as you proceed to slot 7, 8, 9, and
so on. Note also that it does not matter how you start your 100,000 trials.
You may start with 10,000 in state A and 90,000 in state B. Eventually, the
same numbers, 45.5% and 55.5%, will emerge.

In conclusion,

(a) If you look at the long run behavior of the Markov chain at a particular
slot, then the probability that you will see it in state A is 0.455 and
the probability that you will see it in state B is 0.555.

(b) In addition, one can also show that if you look at behavior of a Markov
chain for a long time, then the proportion of time that it stays in state
A is 45.5% and the proportion of time that it stays in state B is 55.5%.

The distribution (0.455, 0.555) is what we called stationary distribution,
steady-state distribution, equilibrium distribution, or limiting distribution
above.

3.8. In [3], the steady-state distribution for the M/M/m/m assumption is
derived via the use of the global balance equation instead of finding the
limit of the distribution as we have done in Example 3.7. The basic idea
that leads to the global balance equation is simple. When we look back at
the numbers that we got in Example 3.7, if we assume that they will reach
some steady-state values, then at the steady-state, we must have roughly
the same number of transitions from state A to B and transitions from state
B to state A.

Therefore,

Finally, we can now use what we learned to derive the Erlang B formula.
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Small Slot Analysis: Markov Chain 

2 1 0 

 

1 

 2

1 2

1   Let pk be the long-term 

probability that K = k. 

0 1p p  1 22p p 
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M/M/m/m Queuing Model 

Global Balance equations 

Example 3.9. Let’s reconsider Example 2.10 where m = 2.

The same process can be used to derive the the Erlang B formula.

3.10. In general, if we have m channels, then

pm =
Am

m!
m∑
k=0

Ak

k!

.

Note that pm is the (long-run) probability that the system is in state m.
When the system is in state m, all channels are used and therefore any new
call request will be blocked and lost.

Here, pm is the same as call blocking probability, which is the long-run
proportion of call requests that get blocked.
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